Autor: |
DANIEL RAPKING, LUKE GEISE, ROBERT WHEELER, MARK FLORES |
Rok vydání: |
2022 |
Zdroj: |
American Society for Composites 2022. |
Popis: |
This study continues to further expand the methods utilized by the Air Force Research Laboratory (AFRL) to understand microscale damage evolution. The microscale test data collected here will be used to validate many multiscale modeling frameworks’ ability to accurately predict damage evolution in complex, heterogeneous microscale structures. Previous work has conducted testing of transverse compression (TC) pillars in scanning electron microscope (SEM) load stages allowing for the measurement of surface level strains while being loaded. The limitation of this approach is a lack of understanding how damage develops through the thickness of the pillar during loading. This work involved the fabrication of a transverse compression micropillar and the experimental test of this sample that visualized through thickness damage evolution in-situ. A post mortem tomography was conducted to fully analyze damage evolution in the micro-pillar to validate the planned framework would be viable for additional microstructural geometries. A complete examination of the pillar, a postmortem Nano-CT, and a preliminary methodology for evaluating multiscale models are presented within this work. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|