A stability theorem for equilibria of delay differential equations in a critical case with application to a model of cell evolution
Autor: | Ragheb Mghames, Irina Badralexi, Andrei Halanay, Karim Amin |
---|---|
Rok vydání: | 2021 |
Předmět: |
0303 health sciences
Applied Mathematics Zero (complex analysis) Characteristic equation Delay differential equation Type (model theory) 01 natural sciences Stability (probability) Action (physics) 010305 fluids & plasmas 03 medical and health sciences Modeling and Simulation 0103 physical sciences Applied mathematics Stability theorem 030304 developmental biology Mathematics |
Zdroj: | Mathematical Modelling of Natural Phenomena. 16:36 |
ISSN: | 1760-6101 0973-5348 |
DOI: | 10.1051/mmnp/2021021 |
Popis: | In this paper the stability of the zero equilibrium of a system with time delay is studied. The critical case of a multiple zero root of the characteristic equation of the linearized system is treated by applying a Malkin type theorem and using a complete Lyapunov-Krasovskii functional. An application to a model for malaria under treatment considering the action of the immune system is presented. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |