Recent results for single-junction and tandem quantum well solar cells
Autor: | B. C. Browne, Nicholas J. Ekins-Daukes, Paul N. Stavrinou, James P. Connolly, J.G.J. Adams, W. Elder, Ian Ballard, Ngai Lam Alvin Chan, A. Ioannides, Keith W. J. Barnham |
---|---|
Rok vydání: | 2011 |
Předmět: |
Materials science
Band gap 02 engineering and technology Concentrator 7. Clean energy 01 natural sciences law.invention law 0103 physical sciences Solar cell Spontaneous emission Electrical and Electronic Engineering Absorption (electromagnetic radiation) Quantum well 010302 applied physics Theory of solar cells Renewable Energy Sustainability and the Environment business.industry food and beverages 021001 nanoscience & nanotechnology Condensed Matter Physics Electronic Optical and Magnetic Materials Multiple exciton generation Optoelectronics 0210 nano-technology business |
Zdroj: | Progress in Photovoltaics: Research and Applications. 19:865-877 |
ISSN: | 1062-7995 |
Popis: | The band gap of the quantum well (QW) solar cell can be adapted to the incident spectral conditions by tailoring the QW depth. The single-junction strain-balanced quantum well solar cell (SB-QWSC) has achieved an efficiency of 28.3%. The dominant loss mechanism at the high concentrator cell operating bias is due to radiative recombination, so a major route to further efficiency improvement requires a restriction of the optical losses. It has been found that (100) biaxial compressive strain suppresses a mode of radiative recombination in the plane of the QWs. As biaxial strain can only be engineered into a solar cell on the nanoscale, SB-QWSCs are seen to have a fundamental efficiency advantage over equivalent bulk cells. Strain-balanced quantum wells in multi-junction solar cells can current match the sub-cells without the introduction of dislocations. Calculations are shown which predict efficiency limits as a function of QW absorption and band gap for such cells. A dual-junction InGaP/GaAs solar cell with QWs in the bottom sub-cell has been grown and characterized. Laboratory and calculated efficiencies relative to control cells are presented for the reported cell and a modeled device, respectively. Copyright © 2011 John Wiley & Sons, Ltd. |
Databáze: | OpenAIRE |
Externí odkaz: |