Bayesian Estimation of the True Score Multitrait–Multimethod Model With a Split-Ballot Design

Autor: Diana Zavala-Rojas, Laura Castro-Schilo, Zita Oravecz, Jonathan L. Helm, Anna DeCastellarnau
Rok vydání: 2017
Předmět:
Zdroj: Structural Equation Modeling: A Multidisciplinary Journal. 25:71-85
ISSN: 1532-8007
1070-5511
DOI: 10.1080/10705511.2017.1378103
Popis: This article examines whether Bayesian estimation with minimally informed prior distributions can alleviate the estimation problems often encountered with fitting the true score multitrait–multimethod structural equation model with split-ballot data. In particular, the true score multitrait–multimethod structural equation model encounters an empirical underidentification when (a) latent variable correlations are homogenous, and (b) fitted to data from a 2-group split-ballot design; an understudied case of empirical underidentification due to a planned missingness (i.e., split-ballot) design. A Monte Carlo simulation and 3 empirical examples showed that Bayesian estimation performs better than maximum likelihood (ML) estimation. Therefore, we suggest using Bayesian estimation with minimally informative prior distributions when estimating the true score multitrait–multimethod structural equation model with split-ballot data. Furthermore, given the increase in planned missingness designs in psychological res...
Databáze: OpenAIRE