Popis: |
Small, low order channels located in wet meadows along the Mogollon Rim of northern Arizona that receive the bulk of their flow from spring discharge exhibit a morphology that differs markedly from channels that receive the bulk of their flow from runoff. These small, spring-dominated channels generally have dense vegetation cover, vertical (or near vertical) banks with flat channel beds that are armored with clasts up to 60 mm. Clasts armoring the spring-dominated channels become mobile at 45 to 85% of the bankfull depth. The lack of fine-grained material in the bed of the spring-dominated channels reflects the small drainage size, lack of fine grain input from the spring, and winnowing affect of the consistent discharge. Minor amounts of large woody debris were present in some of the spring-dominated channels, however, unlike previous studies it does not appear to play a role in the spring-dominated channel morphology. Sinuosity values for spring-dominated channels averaged 1.19, while the average sinuosity values for the runoff-dominated channels, 1.08, were significantly lower. Measured width-to-depth ratios averaged 2.4 in the spring-dominated channels, much lower than the average ratio of 11.6 found for the runoff-dominated channels. The standard deviation of width-to-depth ratios was higher for runoff-dominated channels, reflecting a more variable channel profile. A third channel type, here referred to as hybrid channels, receive significant flow from both springs and runoff. These channels have characteristics that fall between spring-dominated and runoff-dominated channels. Elevation, gradient, organic matter content, and sediment grain size distribution of the wet meadows in which the channels are formed do not exhibit significant differences between channel types, suggesting that these factors are not responsible for the observed differences in channel morphologies. The major differences in controls on the channel morphology found between the spring-dominated and runoff-dominated channels are the discharge regime and the sediment input. The hydrology unique to the spring-dominated channels and the lack of fine-grained sediment input combine to create the observed differences. |