Popis: |
For economic or process-related reasons, punching of structural sheet metal components often has to be used for car bodies. The difference in angle of attack between punch and sheet metal component is referred to as “slant angle”. However, at the current state of the art, no precise information is available on the characteristics of cutting surfaces in relation to the slant angles. For this reason, cost-intensive slider units are used for comparatively small slant angles of around 10° in order to ensure series suitability of corresponding punching processes. In this respect, recent studies performed by the authors have shown that good cutting surface qualities can also be achieved for slant angles distinctly beyond 10°. This contribution presents an empirical test series for the characterization of cutting surface parameters when punching with a slant angle. Here, the experimental cutting surface analysis showed an asymmetric characteristic of the cutting surface along the hole circumference. Furthermore, the investigated sheet metal materials HC340LA, DP600 and DP800 revealed recurring tendencies regarding the parameters “edge draw-in”, “clean cut”, “fracture surface” and “burr height”, which had been combined to corresponding three-dimensional regression models. With these regression models, cutting simulations could be calibrated, allowing a quality prognosis of cutting surfaces achievable when punching at specific slant angles. |