An estimation of distribution algorithm for combinatorial optimization problems

Autor: Ricardo Perez-Rodriguez
Rok vydání: 2022
Zdroj: International Journal of Industrial Optimization. 3:47-67
ISSN: 2723-3022
2714-6006
DOI: 10.12928/ijio.v3i1.5862
Popis: This paper considers solving more than one combinatorial problem considered some of the most difficult to solve in the combinatorial optimization field, such as the job shop scheduling problem (JSSP), the vehicle routing problem with time windows (VRPTW), and the quay crane scheduling problem (QCSP). A hybrid metaheuristic algorithm that integrates the Mallows model and the Moth-flame algorithm solves these problems. Through an exponential function, the Mallows model emulates the solution space distribution for the problems; meanwhile, the Moth-flame algorithm is in charge of determining how to produce the offspring by a geometric function that helps identify the new solutions. The proposed metaheuristic, called HEDAMMF (Hybrid Estimation of Distribution Algorithm with Mallows model and Moth-Flame algorithm), improves the performance of recent algorithms. Although knowing the algebra of permutations is required to understand the proposed metaheuristic, utilizing the HEDAMMF is justified because certain problems are fixed differently under different circumstances. These problems do not share the same objective function (fitness) and/or the same constraints. Therefore, it is not possible to use a single model problem. The aforementioned approach is able to outperform recent algorithms under different metrics for these three combinatorial problems. Finally, it is possible to conclude that the hybrid metaheuristics have a better performance, or equal in effectiveness than recent algorithms.
Databáze: OpenAIRE