Popis: |
The ionic polymer–metal composite (IPMC) is a new practical engineering material that, it has a wide range of capabilities in both dry and liquid environments. IPMC is a new candidate for diaphragms in micropump devices, micro and Nano robotic applications. IPMCs are regarded as a capable actuator for transportable applications, however, the unique combination of electrochemical and mechanical properties that they possess, such as back-relaxation, restraint their use in real-life applications. There have a lot of attempts to understand and model the IPMCs properties and build a whole prototype that can be used, with certainty, in different robotic, control, and medical applications, yet, till now, it seems that the dehydration and back-relaxation are still not modeled properly. The Nernst-Plank-Poisson was chosen to be the base model for the IPMC behavior, we were able to create a new model that truly represent the back-relaxation effects that occur in IPMCs, we’ve called the new model as modified NPP model. The modification used captured data from our experimental work Our modified analytical NPP (Nernst-Plank-Poisson) model was the verified using MATLAB & Simulink, which showed that the model, and the controller design for it was able to first compensate the loss of position of the IPMC due to back-relaxation, and then track the desired position input signals with great accuracy. The model and designed controller can be utilized in verity of robotic applications. |