Derivations on Banach algebras of connected multiplicative linear functionals
Autor: | M. J. Mehdipour, M. Ghasemi |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Bulletin of the Malaysian Mathematical Sciences Society. 44:1727-1748 |
ISSN: | 2180-4206 0126-6705 |
DOI: | 10.1007/s40840-020-01029-z |
Popis: | Let A and B be Banach algebras with $$\sigma (B)\ne \emptyset $$ . Let $$\theta , \phi , \gamma \in \sigma (B)$$ and $$\mathrm{Der}(A\times _\theta ^{\phi , \gamma }B)$$ be the set of all linear mappings $$d: A\times B\rightarrow A\times B$$ satisfying $$d((a, b)\cdot _\theta (x, y))=d(a, b)\cdot _\phi (x, y)+ (a, b)\cdot _\gamma d(x, y)$$ for all $$a, x\in A$$ and $$b, y\in B$$ . In this paper, we characterize elements of $$\mathrm{Der}(A\times _\theta ^{\phi , \gamma }B)$$ in the case where A has a right identity. We then investigate the concept of centralizing for elements of $$\mathrm{Der}(A\times _\theta ^{\phi , \gamma }B)$$ and determine dependent elements of $$\mathrm{Der}(A\times _\theta ^{\phi , \gamma }B)$$ . We also apply some results to group algebras. |
Databáze: | OpenAIRE |
Externí odkaz: |