Popis: |
Climate change and resilience to warming climates have implications for humans, livestock, and wildlife. The genetic mechanisms that confer thermotolerance to mammals are still not well characterized. We used dairy cows as a model to study heat tolerance because they are lactating, and therefore often prone to thermal stress. The data comprised almost 0.5 million milk records (milk, fat, and proteins) of 29,107 Australian Holsteins, each having around 15 million imputed sequence variants. Dairy animals often reduce their milk production when temperature and humidity rise; thus, the phenotypes used to measure an individual’s heat tolerance were defined as the rate of milk production decline (slope traits) with a rising temperature-humidity index. With these slope traits, we performed a genome-wide association study (GWAS) using different approaches, including conditional analyses, to correct for the relationship between heat tolerance and level of milk production. The results revealed multiple novel loci for heat tolerance, including 61 potential functional variants at sites highly conserved across vertebrate species. Moreover, it was interesting that specific candidate variants and genes are related to the neuronal system (ITPR1, ITPR2,andGRIA4) and neuroactive ligand-receptor interaction functions for heat tolerance (NPFFR2, CALCR,andGHR), providing a novel insight that can help to develop genetic and management approaches to combat heat stress.Author summaryWhile understanding the genetic basis of heat tolerance is crucial in the context of global warming’s effect on humans, livestock, and wildlife, the specific genetic variants and biological features that confer thermotolerance in animals are still not well characterized. The ability to tolerate heat varies across individuals, with substantial genetic control of this complex trait. Dairy cattle are excellent model in which to find genes associated with individual variations in heat tolerance since they significantly suffer from heat stress due to the metabolic heat of lactation. By genome-wide association studies of more than 29,000 cows with 15 million sequence variants and controlled phenotype measurements, we identify many new loci associated with heat tolerance. The biological functions of these loci are linked to the neuronal system and neuroactive ligand-receptor interaction functions. Also, several putative causal mutations for heat tolerance are at genomic sites that are otherwise evolutionarily conserved across 100 vertebrate species. Overall, our findings provide new insight into the molecular and biological basis of heat tolerance that can help to develop genetic and management approaches to combat heat stress. |