Tuning electrical properties in Ga2O3 polymorphs induced with ion beams

Autor: A. Y. Polyakov, А. I. Kochkova, A. Azarov, V. Venkatachalapathy, A. V. Miakonkikh, A. A. Vasilev, A. V. Chernykh, I. V. Shchemerov, A. A. Romanov, A. Kuznetsov, S. J. Pearton
Rok vydání: 2023
Předmět:
Zdroj: Journal of Applied Physics. 133:095701
ISSN: 1089-7550
0021-8979
DOI: 10.1063/5.0133181
Popis: Ion beam fabrication of metastable polymorphs of Ga2O3, assisted by the controllable accumulation of the disorder in the lattice, is an interesting alternative to conventional deposition techniques. However, the adjustability of the electrical properties in such films is unexplored. In this work, we investigated two strategies for tuning the electron concentration in the ion beam created metastable κ-polymorph: adding silicon donors by ion implantation and adding hydrogen via plasma treatments. Importantly, all heat treatments were limited to ≤600 °C, set by the thermal stability of the ion beam fabricated polymorph. Under these conditions, silicon doping did not change the high resistive state caused by the iron acceptors in the initial wafer and residual defects accumulated upon the implants. Conversely, treating samples in a hydrogen plasma converted the ion beam fabricated κ-polymorph to n-type, with a net donor density in the low 1012 cm−3 range and dominating deep traps near 0.6 eV below the conduction band. The mechanism explaining this n-type conductivity change may be due to hydrogen forming shallow donor complexes with gallium vacancies and/or possibly passivating a fraction of the iron acceptors responsible for the high resistivity in the initial wafers.
Databáze: OpenAIRE