Use of Novel Welding Technologies for High-Entropy Alloys Joining
Autor: | Nikolai Kashaev, Sergey Malopheyev, Rustam Kaibyshev, Vladimir N. Sanin, D.G. Shaysultanov, Nikita Stepanov, Sergey Zherebtsov, Igor Vysotskiy |
---|---|
Rok vydání: | 2018 |
Předmět: |
010302 applied physics
Materials science Mechanical Engineering High entropy alloys Metallurgy 02 engineering and technology Welding 021001 nanoscience & nanotechnology Condensed Matter Physics 01 natural sciences law.invention Mechanics of Materials law 0103 physical sciences General Materials Science 0210 nano-technology |
Zdroj: | Materials Science Forum. 941:919-924 |
ISSN: | 1662-9752 |
DOI: | 10.4028/www.scientific.net/msf.941.919 |
Popis: | Laser beam welding and friction stir welding of high entropy alloys (HEA) of the CoCrFeNiMn system were studied. The HEAs were produced by self-propagating high-temperature synthesis (SHS). Along with the principal elements, Al, C, S, and Si impurities were detected in the composition of the alloys. The as-cast alloys consisted of columnar fcc grains with coarse precipitates of MnS and fine Cr-rich M23C6carbides. Laser beam welding resulted in the formation of a defect-free weld joint. Precipitation of nanoscale B2 phase particles in the weld zone leaded to a pronounced increase in microhardness from ~150 HV of the base material to ~220 HV in the fusion zone. Friction stir welding (FSW) of a recrystallized state of the HEA with the average grain size of 3-5 μm resulted in the formation of a fine microstructure with a grain size of ~1.5 μm in the most strained area. Noticeable rise in strength and some decrease in ductility of the processed alloy in comparison with the initial condition can be associated with the formation of nanosized M23C6carbides. |
Databáze: | OpenAIRE |
Externí odkaz: |