A condensate forming tether for lariat debranching enzyme is defective in non-photosensitive trichothiodystrophy

Autor: Brittany A. Townley, Luke Buerer, Albino Bacolla, Timur Rusanov, Nicolas Schmidt, Sridhar N. Srivatsan, Nathanial E. Clark, Fadhel Mansoori, Reilly A. Sample, Joshua R. Brickner, Drew McDonald, Miaw-Sheue Tsai, Matthew J. Walter, David F. Wozniak, Alex S. Holehouse, John A. Tainer, William G. Fairbrother, Nima Mosammaparast
Rok vydání: 2022
Popis: SummaryThe pre-mRNA life cycle requires intron processing; yet, how intron processing defects influence splicing and gene expression is unclear. Here, we find TTDN1, which is frequently mutated in non-photosensitive trichothiodystrophy (NP-TTD), functionally links intron lariat processing to the spliceosome. The conserved TTDN1 C-terminal region directly binds lariat debranching enzyme DBR1, while its N-terminal intrinsically disordered region (IDR) binds the intron binding complex (IBC). The IDR forms condensatesin vitroand is needed for IBC interaction. TTDN1 loss causes significant intron lariat accumulation, as well as splicing and gene expression defects, mirroring phenotypes observed in NP-TTD patient cells.Ttdn1Δ/Δmice recapitulate intron processing defects and neurodevelopmental phenotypes seen in NP-TTD. A DBR1-IDR fusion recruits DBR1 to the IBC and circumvents the requirement for TTDN1, indicating this tethering role as its major molecular function. Collectively, our findings unveil key functional connections between lariat processing, splicing outcomes, and NP-TTD molecular pathology.
Databáze: OpenAIRE