Stability for a magnetic Schrödinger operator on a Riemann surface with boundary
Autor: | Joel Andersson, Leo Tzou |
---|---|
Rok vydání: | 2018 |
Předmět: |
Physics
Control and Optimization Computer Science::Information Retrieval Riemann surface Operator (physics) Holonomy Boundary (topology) Cauchy distribution symbols.namesake Modeling and Simulation symbols Discrete Mathematics and Combinatorics Pharmacology (medical) Compact Riemann surface Connection (algebraic framework) Analysis Schrödinger's cat Mathematical physics |
Zdroj: | Inverse Problems & Imaging. 12:1-28 |
ISSN: | 1930-8345 |
DOI: | 10.3934/ipi.2018001 |
Popis: | We consider a magnetic Schrodinger operator \begin{document} $(\nabla^X)^*\nabla^X+q$ \end{document} on a compact Riemann surface with boundary and prove a \begin{document} $\log\log$ \end{document} -type stability estimate in terms of Cauchy data for the electric potential and magnetic field under the assumption that they satisfy appropriate a priori bounds. We also give a similar stability result for the holonomy of the connection 1-form \begin{document} $X$ \end{document} . |
Databáze: | OpenAIRE |
Externí odkaz: |