Stability for a magnetic Schrödinger operator on a Riemann surface with boundary

Autor: Joel Andersson, Leo Tzou
Rok vydání: 2018
Předmět:
Zdroj: Inverse Problems & Imaging. 12:1-28
ISSN: 1930-8345
DOI: 10.3934/ipi.2018001
Popis: We consider a magnetic Schrodinger operator \begin{document} $(\nabla^X)^*\nabla^X+q$ \end{document} on a compact Riemann surface with boundary and prove a \begin{document} $\log\log$ \end{document} -type stability estimate in terms of Cauchy data for the electric potential and magnetic field under the assumption that they satisfy appropriate a priori bounds. We also give a similar stability result for the holonomy of the connection 1-form \begin{document} $X$ \end{document} .
Databáze: OpenAIRE