Offset pixel aperture technique for extracting depth information
Autor: | Sang-Hwan Kim, Jimin Lee, Seunghyuk Chang, Myunghan Bae, Jong-Ho Park, Sangjin Lee, Byoung-Soo Choi, Chang-Woo Oh, Jang-Kyoo Shin |
---|---|
Rok vydání: | 2017 |
Předmět: |
CMOS sensor
Pixel business.industry Computer science 3D reconstruction ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION Stereopsis Computer Science::Computer Vision and Pattern Recognition Color gel Computer vision Artificial intelligence Image sensor business Face detection ComputingMethodologies_COMPUTERGRAPHICS Structured light |
Zdroj: | Novel Optical Systems Design and Optimization XX. |
DOI: | 10.1117/12.2280000 |
Popis: | The 3-dimensional (3D) imaging is an important area which can be applied to face detection, gesture recognition, and 3D reconstruction. Many techniques have been reported for 3D imaging using various methods such as time of fight (TOF), stereo vision, and structured light. These methods have limitations such as use of light source, multi-camera, or complex camera system. In this paper, we propose the offset pixel aperture (OPA) technique which is implemented on a single chip so that the depth can be obtained without increasing hardware cost and adding extra light sources. 3 types of pixels including red (R), blue (B), and white (W) pixels were used for OPA technique. The aperture is located on the W pixel, which does not have a color filter. Depth performance can be increased with a higher sensitivity because we use white (W) pixels for OPA with red (R) and blue (B) pixels for imaging. The RB pixels produce a defocused image with blur, while W pixels produce a focused image. The focused image is used as a reference image to extract the depth information for 3D imaging. This image can be compared with the defocused image from RB pixels. Therefore, depth information can be extracted by comparing defocused image with focused image using the depth from defocus (DFD) method. Previously, we proposed the pixel aperture (PA) technique based on the depth from defocus (DFD). The OPA technique is expected to enable a higher depth resolution and range compared to the PA technique. The pixels with a right OPA and a left OPA are used to generate stereo image with a single chip. The pixel structure was designed and simulated. Optical performances of various offset pixel aperture structures were evaluated using optical simulation with finite-difference time-domain (FDTD) method. |
Databáze: | OpenAIRE |
Externí odkaz: |