Atmospheric correction based on inherent optical properties of sea water at NIR wavelengths combined with an automated aerosol spectra determination (ASD) technique
Autor: | Prakash Chauhan, Ranganath R. Navalgund, Nivedita Sanwlani |
---|---|
Rok vydání: | 2014 |
Předmět: |
Scattering
Ocean turbidity Atmospheric correction Spectral line Aerosol Wavelength Radiance Astrophysics::Solar and Stellar Astrophysics General Earth and Planetary Sciences Environmental science Astrophysics::Earth and Planetary Astrophysics Absorption (electromagnetic radiation) Physics::Atmospheric and Oceanic Physics Remote sensing |
Zdroj: | International Journal of Remote Sensing. 35:3631-3650 |
ISSN: | 1366-5901 0143-1161 |
DOI: | 10.1080/01431161.2014.907936 |
Popis: | Atmospheric correction is the process whereby atmospheric effects on sensor-recorded radiance are removed and the surface radiance is estimated. Atmospheric effects due to gaseous absorption, molecular scattering – and their seasonal as well as latitudinal variations – can be adequately accounted for by using pre-computed look-up tables. However, scattering by aerosol particles is difficult to correct. At-sensor radiance at near-infrared (NIR) wavelengths, after being corrected for gaseous absorption and molecular scattering, was assumed (in standard atmospheric correction) to have been entirely due to aerosol scattering and was used to calculate the aerosol parameters. This assumption, although valid for open ocean clear waters, is not valid for turbid waters due to scattering by suspended particles in the water, which results in an appreciable amount of water-leaving radiance in the NIR region. A new turbid water atmospheric correction scheme is described here for Oceansat-2 Ocean Colour Monitor (OCM-2)... |
Databáze: | OpenAIRE |
Externí odkaz: |