One-pot multicomponent green LED photoinduced synthesis of chromeno[4,3-b]chromenes catalyzed by a new nanophotocatalyst histaminium tetrachlorozincate
Autor: | Behrooz Maleki, Reza Tayebee, Mahbube Jarrahi, Alireza Salimi |
---|---|
Rok vydání: | 2021 |
Předmět: |
010405 organic chemistry
Cost effectiveness Chemistry General Chemical Engineering Nanoparticle Substrate (chemistry) General Chemistry 010402 general chemistry 01 natural sciences Combinatorial chemistry 0104 chemical sciences Catalysis chemistry.chemical_compound Atom economy Dimedone Photocatalysis Leaching (metallurgy) |
Zdroj: | RSC Advances. 11:19723-19736 |
ISSN: | 2046-2069 |
DOI: | 10.1039/d1ra00189b |
Popis: | Histaminium tetrachlorozincate nanoparticles are prepared, characterized and applied as an effective and recoverable photocatalyst in the one-pot, green and multi-component synthesis of various chromenes by the reaction of dimedone and/or 1,3-cyclohexanedione, arylaldehyde and 4-hydroxycoumarin in high yields under solventless conditions at ambient temperature. This new catalyst is characterized by FT-IR, XRD, EDX, NMR, SEM and TEM techniques. The incorporation of histaminium ions into the framework of ZnCl42− significantly affected the photocatalytic activity of tetrachlorozincate such that good reusability and recyclability are attained. Moreover, reactive species such as ˙O2− and hydroxyl radicals have proved to be active species in the presented photocatalytic reaction. In addition, the hot filtration test confirms enough stability of the photocatalyst and no significant leaching and destruction of the framework in the course of the reaction. The major advantages of the presented methodology include easy work-up, cost effectiveness, nontoxic nature, broad substrate scope, 100% atom economy, ease of separation, and environment friendly reaction conditions. Finally, the catalyst could be reused many times without significant loss of activity. |
Databáze: | OpenAIRE |
Externí odkaz: |