AlGaN-based focal plane arrays for selective UV imaging at 310nm and 280nm and route toward deep UV imaging

Autor: Idir Mourad, J. A. Robo, Jean-Luc Reverchon, Jean-Yves Duboz, Jean-Pascal Caumes, Julien Brault, J. P. Truffer
Rok vydání: 2007
Předmět:
Zdroj: SPIE Proceedings.
ISSN: 0277-786X
Popis: The fast development of nitrides has given the opportunity to investigate AlGaN as a material for ultraviolet detection. Such camera present an intrinsic spectral selectivity and an extremely low dark current at room temperature. It can compete with technologies based on photocathodes, MCP intensifiers, back thinned CCD or hybrid CMOS focal plane arrays (FPA) for low flux measurements. AlGaN based cameras allow UV imaging without filters or with simplified ones in harsh solar blind conditions. Few results on camera have been shown in the last years, but the ultimate performances of AlGaN photodiodes couldn't be achieved due to parasitic illumination of multiplexers, responsivity of p layers in p-i-n structures, or use of cooled readout circuit. Such issues have prevented up to now a large development of this technology. We present results on focal plane array of 320x256 pixels with a pitch of 30μm for which Schottky photodiodes are multiplexed with a readout circuit protected by black matrix at room temperature. Theses focal plane present a peak reponsivity around 280nm and 310nm with a rejection of visible light of four decades only limited by internal photoemission in contact. Then we will show the capability to outdoor measurements. The noise figure is due to readout noise of the multiplexer and we will investigate the ultimate capabilities of Schottky diodes or Metal- Semiconductor-Metal (MSM) technologies to detect extremely low signal. Furthermore, we will consider deep UV measurements on single pixels MSM from 32nm to 61nm in a front side illumination configuration. Finally, we will define technology process allowing backside illumination and deep UV imaging.
Databáze: OpenAIRE