Tribological Performance of Titanium Alloy Ti–6Al–4V via CVD–diamond Coatings
Autor: | N. A. Sheikh, Sajad Hussain Din, M. A. Shah |
---|---|
Rok vydání: | 2018 |
Předmět: |
Materials science
Titanium alloy Diamond 02 engineering and technology Chemical vapor deposition Tribology engineering.material 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences Nanocrystalline material 0104 chemical sciences Inorganic Chemistry Microcrystalline Residual stress Ultimate tensile strength engineering General Materials Science Composite material 0210 nano-technology |
Zdroj: | Journal of Superhard Materials. 40:26-39 |
ISSN: | 1934-9408 1063-4576 |
DOI: | 10.3103/s1063457618010057 |
Popis: | In the present study, HFCVD nanocrystalline, microcrystalline and boron-doped nanocrystalline diamond coatings have been deposited on titanium alloy. The effect of boron doping on coefficient of friction and residual stresses of diamond coatings have been studied. The tribological characteristics of the aforementioned three coatings on Ti–6Al–4V substrates were studied using ball on disc micro-tribometer, the thickness of the coatings being 3 μm. The coated Ti–6Al–4V discs were slid against alumina (Al2O3) balls with normal load ranging from 1 to 10 N. The boron-doped NCD coated sample disc was found to possess the lowest average coefficient of friction ~ 0.0804 while the undoped NCD and MCD coated sample discs were found to possess the average coefficients of friction of ~ 0.143 and ~ 0.283, respectively. Raman spectroscopy studies revealed that the residual stresses in boron-doped nanocrystalline coatings were tensile in nature, while the residual stresses in undoped NCD and MCD were found to be of compressive nature. |
Databáze: | OpenAIRE |
Externí odkaz: |