Minor impacts of major volcanic eruptions on hurricanes in dynamically-downscaled last millennium simulations
Autor: | Brandon N. Benton, Marc J. Alessi, Dimitris A. Herrera, Xiaolu Li, Carlos M. Carrillo, Toby R. Ault |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Climate Dynamics. 59:1597-1615 |
ISSN: | 1432-0894 0930-7575 |
DOI: | 10.1007/s00382-021-06057-4 |
Popis: | The effects of volcanic eruptions on hurricane statistics are examined using two long simulations from the Community Earth System Model (CESM) Last Millennium Ensemble (LME). The first is an unforced control simulation, wherein all boundary conditions were held constant at their 850 CE values (LMEcontrol). The second is a “fully forced” simulation with time evolving radiative changes from volcanic, solar, and land use changes from 850 CE through present (LMEforced). Large tropical volcanic eruptions produce the greatest change in radiative forcing during this time period, which comprise the focus of this study. The Weather Research and Forecasting (WRF) model is used to dynamically downscale 150 control years of LMEcontrol and an additional 84 years of LMEforced for all mid-latitude volcanic eruptions between 1100 and 1850 CE. This time period was selected based on computational considerations. For each eruption, 2 years are dynamically downscaled. 23 of these volcanic eruptions are in the Northern Hemisphere and 19 are in the Southern Hemisphere. The effectiveness of the downscaling methodology is examined by applying the same downscaling approach to historical ERA-I reanalysis data and comparing the downscaled storm tracks and intensities to the International Best Track Archive for Climate Stewardship (IBTrACS) database. Hurricane statistics are then computed from both the downscaled control and downscaled forced LME simulations. Results suggest moderate effects on hurricanes from the average of all northern hemisphere eruptions, with the largest effects being from the volcanoes with the most aerosol forcing. More specifically, reductions in hurricane frequency, intensity, and lifetime following northern hemisphere eruptions are apparent. Strong evidence is also shown for correlation between eruption strength and changes in these diagnostics. The aggregate effect from both northern and southern hemisphere eruptions is minor. While reductions in frequency, intensity, and lifetime from northern hemisphere eruptions occur, the opposite effect is observed from southern hemisphere eruptions. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |