Sensitivity of live microalgal aquaculture feed to singlet oxygen-based photodynamic therapy
Autor: | Lone Høj, Gabriella Citarrella, Martino E. Malerba, Kirsten Heimann, Danilo Malara, Michael Oelgemöller |
---|---|
Rok vydání: | 2019 |
Předmět: |
0106 biological sciences
biology Chemistry Singlet oxygen business.industry 010604 marine biology & hydrobiology medicine.medical_treatment Photodynamic therapy Plant Science Aquatic Science Sterilization (microbiology) biology.organism_classification 01 natural sciences chemistry.chemical_compound Aquaculture medicine Photosensitizer Food science Vibrio campbellii Axenic business Bacteria 010606 plant biology & botany |
Zdroj: | Journal of Applied Phycology. 31:3593-3606 |
ISSN: | 1573-5176 0921-8971 |
Popis: | Highly nutritional microalgal species are extensively used in aquaculture as live feedstock. Due to difficulties in maintaining microalgae in axenic conditions, they represent a potential pathogen carrier and disease vector in aquaculture ponds. Photodynamic therapy (PDT) via singlet oxygen (1O2) production is a promising sterilization technique in aquaculture. Here, we report on the sensitivity of aquaculture-relevant microalgae towards 1O2 generated by the cationic photosensitizer TMPyP. Possible PDT sterilization protocols of contaminated microalgae cultures were evaluated using the luminescent bacterium Vibrio campbellii ISO7 as a model aquaculture pathogen. Species-specific sensitivity of microalgae to TMPyP-mediated PDT was demonstrated and found to be strongly influenced by the nature and architecture of their respective cell wall. While cytotoxicity was not evident against Nannochloropsis oculata, toxicity of 1O2 was dose-, time- and light activation-dependent against Tisochrysis lutea, Tetraselmis chui, Chaetoceros muelleri and Picochlorum atomus. The 1O2-resilient N. oculata was sterilized when incubated under light in the presence of V. campbellii ISO7 (up to 107 CFU mL−1) and 20 μM TMPyP; hence, TMPyP-based PDT sterilization of N. oculata could be suitable for aquaculture hatcheries. This study also suggests that PDT using cationic porphyrins such as TMPyP holds potential as an algicidal treatment in aquaria and aquaculture systems (but more research using opportunistic and toxic species is needed for confirmation). |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |