Source/Drain Stressor Design for Advanced Devices at 7 nm Technology Node

Autor: E. Mahapatra, S. N. Das, Tara Prasanna Dash, C. K. Maiti, S. Dey, J. Jena
Rok vydání: 2020
Předmět:
Zdroj: Nanoscience & Nanotechnology-Asia. 10:447-456
ISSN: 2210-6812
DOI: 10.2174/2210681209666190809101307
Popis: Background:: In nano and microelectronics, device performance enhancement is limited by downscaling. Introduction of intentional mechanical stress is a potential mobility booster to overcome these limitations. This paper explores the key design challenges of stress-engineered FinFETs based on the epitaxial SiGe S/D at 7 nm Technology node. Objective:: To study the mechanical stress evolution in a tri-gate FinFET at 7 nm technology node using technology CAD (TCAD) simulations. Using stress maps, we analyze the mechanical stress impact on the transfer characteristics of the devices through device simulation. Methods: 3D sub-band Boltzmann transport analysis for tri-gate PMOS FinFETs was used, with 2D Schrödinger solution in the fin cross-section and 1D Boltzmann transport along the channel. Results:: Using stress maps, the mechanical stress impact on the transfer characteristics of the device through device simulation has been analyzed. Conclusion:: Suitability of predictive TCAD simulations to explore the potential of innovative strain-engineered FinFET structures for future generation CMOS technology is demonstrated.
Databáze: OpenAIRE