Stochastic Ordering of Infinite Geometric Galton–Watson Trees
Autor: | Erik I. Broman |
---|---|
Rok vydání: | 2015 |
Předmět: |
Statistics and Probability
Galton watson Discrete mathematics General Mathematics 010102 general mathematics Coupling (probability) 01 natural sciences Stochastic ordering Combinatorics 010104 statistics & probability Tree (descriptive set theory) Distribution (mathematics) Mathematics::Probability Physics::Atomic Physics 0101 mathematics Statistics Probability and Uncertainty Mathematics |
Zdroj: | Journal of Theoretical Probability. 29:1069-1082 |
ISSN: | 1572-9230 0894-9840 |
DOI: | 10.1007/s10959-015-0608-x |
Popis: | We consider Galton–Watson trees with Geom\((p)\) offspring distribution. We let \(T_{\infty }(p)\) denote such a tree conditioned on being infinite. We prove that for any \(1/2\le p_1 |
Databáze: | OpenAIRE |
Externí odkaz: |