ON COMPUTATIONAL POWER OF WEIGHTED FINITE AUTOMATA
Autor: | Alain Terlutte, Juhani Karhumäki, Denis Derencourt, Michel Latteux |
---|---|
Rok vydání: | 1996 |
Předmět: |
TheoryofComputation_COMPUTATIONBYABSTRACTDEVICES
Algebra and Number Theory Nested word Timed automaton ω-automaton Nonlinear Sciences::Cellular Automata and Lattice Gases Theoretical Computer Science Algebra TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES Deterministic finite automaton Computational Theory and Mathematics Continuous spatial automaton Automata theory Quantum finite automata Nondeterministic finite automaton Computer Science::Formal Languages and Automata Theory Information Systems Mathematics |
Zdroj: | Fundamenta Informaticae. 25:285-293 |
ISSN: | 0169-2968 |
DOI: | 10.3233/fi-1996-253406 |
Popis: | Weighted Finite Automata are automata with multiplicities used to compute real functions by reading infinite words. The aim of this paper is to study what kind of functions can be computed by level automata, a particular subclass of WFA. Several results concerning the continuity and the smoothness of these functions are shown. In particular, the only smooth functions that can be obtained are the polynomials. This enables to decide whether a function computed by a level automaton is smooth or not. |
Databáze: | OpenAIRE |
Externí odkaz: |