Soot and combustion models for direct-injection natural gas engines

Autor: James S. Wallace, Kang Pan
Rok vydání: 2020
Předmět:
Zdroj: International Journal of Engine Research. 23:150-166
ISSN: 2041-3149
1468-0874
DOI: 10.1177/1468087420978014
Popis: This paper summarizes the validation of a modified multi-step phenomenological soot model and an enhanced combustion model used for direct-injection natural gas engines. In this study, a modified phenomenological soot model including the key steps for soot formation, such as particle inception and surface growth, was developed in KIVA-3V to replace the empirical model for use in a glow plug assisted natural gas direct-injection engine. The soot model was integrated with a CANTERA based kinetic model, which employs a recently developed low temperature natural gas mechanism to predict the reactions of some important gaseous species involved in the soot formation, such as acetylene and hydroxyl. The simulated in-cylinder flame propagation process induced by a glow plug was compared to the experimental optical images obtained in an engine-like environment. In addition, both the kinetic model and modified soot model were compared with the experimental emission data to validate their reliability for predicting natural gas engine emission characteristics. The engine combustion efficiencies obtained in simulations and experiments were compared as well. The matched results suggest that the computational models can well predict the natural gas combustion and emission characteristics, and will be suitable for investigating the direct-injection natural gas engine technologies.
Databáze: OpenAIRE
Popis
Abstrakt:This paper summarizes the validation of a modified multi-step phenomenological soot model and an enhanced combustion model used for direct-injection natural gas engines. In this study, a modified phenomenological soot model including the key steps for soot formation, such as particle inception and surface growth, was developed in KIVA-3V to replace the empirical model for use in a glow plug assisted natural gas direct-injection engine. The soot model was integrated with a CANTERA based kinetic model, which employs a recently developed low temperature natural gas mechanism to predict the reactions of some important gaseous species involved in the soot formation, such as acetylene and hydroxyl. The simulated in-cylinder flame propagation process induced by a glow plug was compared to the experimental optical images obtained in an engine-like environment. In addition, both the kinetic model and modified soot model were compared with the experimental emission data to validate their reliability for predicting natural gas engine emission characteristics. The engine combustion efficiencies obtained in simulations and experiments were compared as well. The matched results suggest that the computational models can well predict the natural gas combustion and emission characteristics, and will be suitable for investigating the direct-injection natural gas engine technologies.
ISSN:20413149
14680874
DOI:10.1177/1468087420978014