Existence and stability of traveling wave fronts for a reaction-diffusion system with spatio-temporal nonlocal effect
Autor: | Mengqi Li, Peixuan Weng, Chufen Wu |
---|---|
Rok vydání: | 2017 |
Předmět: |
Applied Mathematics
010102 general mathematics Mathematical analysis Computational Mechanics Perturbation (astronomy) 01 natural sciences 010101 applied mathematics Arbitrarily large Classical mechanics Exponential stability Exponential growth Reaction–diffusion system Traveling wave 0101 mathematics Weighted energy Mathematics |
Zdroj: | ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 97:1555-1578 |
ISSN: | 0044-2267 |
DOI: | 10.1002/zamm.201600170 |
Popis: | In this paper, traveling wave fronts for a two dimensional quasi-monotone reaction-diffusion system with spatio-temporal delays are investigated. We use the upper-lower solution method and the fixed-point theorem to establish the existence of traveling waves for the system, and the technique of comparison principle combined with the weighted energy function to study the global exponential stability of traveling waves of the equations with large initial perturbation. The initial perturbation around the traveling waves decays exponentially as x→−∞, but it can be arbitrarily large in other locations. |
Databáze: | OpenAIRE |
Externí odkaz: |