An inverse theorem for additive bases

Autor: Dongchun Han, Yongke Qu
Rok vydání: 2016
Předmět:
Zdroj: International Journal of Number Theory. 12:1509-1518
ISSN: 1793-7310
1793-0421
DOI: 10.1142/s1793042116500937
Popis: Let [Formula: see text] be a finite abelian group of order [Formula: see text], and [Formula: see text] be the smallest prime dividing [Formula: see text]. Let [Formula: see text] be a sequence over [Formula: see text]. We say that [Formula: see text] is regular if for every proper subgroup [Formula: see text], [Formula: see text] contains at most [Formula: see text] terms from [Formula: see text]. Let [Formula: see text] be the smallest integer [Formula: see text] such that every regular sequence [Formula: see text] over [Formula: see text] of length [Formula: see text] forms an additive basis of [Formula: see text], i.e. [Formula: see text]. Recently, [Formula: see text] was determined for many abelian groups. In this paper, we determined [Formula: see text] for more abelian groups and characterize the structure of the regular sequence [Formula: see text] over [Formula: see text] of length [Formula: see text] and [Formula: see text].
Databáze: OpenAIRE