Thermal decomposition of MgCO3during the atmospheric entry of micrometeoroids

Autor: Savino Longo, G. Micca Longo
Rok vydání: 2017
Předmět:
Zdroj: International Journal of Astrobiology. 16:368-378
ISSN: 1475-3006
1473-5504
DOI: 10.1017/s1473550416000495
Popis: In this paper, a first study of the atmospheric entry of carbonate micrometeoroids, in an astrobiological perspective, is performed. Therefore an entry model, which includes two-dimensional dynamics, non-isothermal atmosphere, ablation and radiation losses, is build and benchmarked to literature data for silicate micrometeoroids. A thermal decomposition model of initially pure magnesium carbonate is proposed, and it includes thermal energy, mass loss and the effect of changing composition as the carbonate grain is gradually converted into oxide. Several scenarios are obtained by changing the initial speed, entry angle and grain diameter, producing a systematic comparison of silicate and carbonate grain. The results of the composite model show that the thermal behaviour of magnesium carbonate is markedly different from that of the corresponding silicate, much lower equilibration temperatures being reached in the first stages of the entry. At the same time, the model shows that the limit of a thermal protection scenario, based on magnesium carbonate, is the very high decomposition speed even at moderate temperatures, which results in the total loss of carbon already at about 100 km altitude. The present results show that, although decomposition and associated cooling are important effects in the entry process of carbonate grains, the specific scenario of pure MgCO3micrograin does not allow complex organic matter delivery to the lower atmosphere. This suggests us to consider less volatile carbonates for further studies.
Databáze: OpenAIRE