Global Solvability of the Cauchy-Dirichlet Problem for a Class of Strongly Nonlinear Parabolic Systems
Autor: | Arina A. Arkhipova |
---|---|
Rok vydání: | 2020 |
Předmět: |
Statistics and Probability
Quadratic growth Dirichlet problem Polynomial Class (set theory) Applied Mathematics General Mathematics 010102 general mathematics Structure (category theory) Cauchy distribution 01 natural sciences 010305 fluids & plasmas Elliptic operator Nonlinear system 0103 physical sciences Applied mathematics 0101 mathematics Mathematics |
Zdroj: | Journal of Mathematical Sciences. 250:201-231 |
ISSN: | 1573-8795 1072-3374 |
Popis: | We consider a class of nonlinear parabolic systems for elliptic operators of variational structure with nondiagonal principal matrices. Additional terms in the systems can have quadratic growth with respect to the gradient and arbitrary polynomial growth with respect to solutions. We obtain sufficient conditions for the time-global weak solvability of the Cauchy–Dirichlet problem and study the regularity of the solution. The case of two spatial variables is considered. |
Databáze: | OpenAIRE |
Externí odkaz: |