Popis: |
The condition of the pavement surface on highways is an important factor in ensuring traffic safety. The condition of the road pavements varies according to the climatic conditions of the road. To record the variability of road pavements according to meteorological factors, both sensors placed in the pavement and road meteorology information stations are installed on the roadsides. Within the scope of intelligent transportation systems, the establishment of road management information systems and the status of the road pavement in real-time can be observed with the data obtained from the sensors. With these sensor data, the road surface condition can be estimated with different artificial intelligence methods. Thus, important information is provided for decision-makers in taking precautions according to the dry, wet, and icy road surface condition. In this study, it is purposed to estimate the road surface condition based on meteorological parameters. For this purpose, deep learning models have been developed. Air temperature (tmp), dew point temperature (dwp), wind speed (sknt), wind direction (drct), wind gust (gust), pavement sensor temperature (tfs), and pavement sensor condition (cond) parameters were used in 65966 datasets. Accuracy was used in the evaluation of deep learning models. Consequently, the evaluation, the accuracy value of the best model was determined as 0.88. In addition, accuracy, recall, precision, and F1-score values of each class were calculated for the test set of the best model. |