Intersections of curve systems and the crossing number ofC 5 ×C 5
Autor: | R. B. Richter, C. Thomassen |
---|---|
Rok vydání: | 1995 |
Předmět: | |
Zdroj: | Discrete & Computational Geometry. 13:149-159 |
ISSN: | 1432-0444 0179-5376 |
DOI: | 10.1007/bf02574034 |
Popis: | It[Figure not available: see fulltext.] and[Figure not available: see fulltext.] are two families of pairwise disjoint simple closed curves in the plane such that each curve in[Figure not available: see fulltext.] intersects each curve in[Figure not available: see fulltext.], then the total number of points of intersection in[Figure not available: see fulltext.] is at least 2(m?1)n, where[Figure not available: see fulltext.][Figure not available: see fulltext.], and this bound is best possible. We use this to show that the cartesian product of two 5-cycles has crossing number 15. |
Databáze: | OpenAIRE |
Externí odkaz: |