Intuitionism in the Philosophy of Mathematics: Introducing a Phenomenological Account
Autor: | Philipp Berghofer |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Philosophia Mathematica. 28:204-235 |
ISSN: | 1744-6406 0031-8019 |
DOI: | 10.1093/philmat/nkaa011 |
Popis: | The aim of this paper is to establish a phenomenological mathematical intuitionism that is based on fundamental phenomenological-epistemological principles. According to this intuitionism, mathematical intuitions are sui generis mental states, namely experiences that exhibit a distinctive phenomenal character. The focus is on two questions: what does it mean to undergo a mathematical intuition and what role do mathematical intuitions play in mathematical reasoning? While I crucially draw on Husserlian principles and adopt ideas we find in phenomenologically minded mathematicians such as Hermann Weyl and Kurt Gödel, the overall objective is systematic in nature: to offer a plausible approach towards mathematics. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |