Convergence and errors for spectral components of the projective-finite element approximation to variational eigenvalue problems
Autor: | Wendell H. Mills |
---|---|
Rok vydání: | 1981 |
Předmět: |
Control and Optimization
Mathematical analysis Banach space Hermitian matrix Finite element method Computer Science Applications Product (mathematics) Signal Processing Convergence (routing) Divide-and-conquer eigenvalue algorithm Element (category theory) Analysis Eigenvalues and eigenvectors Mathematics |
Zdroj: | Numerical Functional Analysis and Optimization. 4:1-21 |
ISSN: | 1532-2467 0163-0563 |
DOI: | 10.1080/01630568108816103 |
Popis: | We analyze the Galerkin-finite element approximation to the variational eigenvalue problem a(u,v) = λb(u,v) on a product of reflexive Banach spaces B1 × B2 We obtain eigenvalue convergence results for infinitely generated spectra in the non-Hermitian case and eigensolution convergence and errors in the Hermitian case. |
Databáze: | OpenAIRE |
Externí odkaz: |