Popis: |
The Thamama group of reservoirs consist of porous carbonates laminated with tight carbonates, with pronounced lateral heterogeneities in porosity, permeability, and reservoir thickness. The main objective of our study was mapping variations and reservoir quality prediction away from well control. As the reservoirs were thin and beyond seismic resolution, it was vital that the facies and porosity be mapped in high resolution, with a high predictability, for successful placement of horizontal wells for future development of the field. We established a unified workflow of geostatistical inversion and rock physics to characterize the reservoirs. Geostatistical inversion was run in static models that were converted from depth to time domain. A robust two-way velocity model was built to map the depth grid and its zones on the time seismic data. This ensured correct placement of the predicted high-resolution elastic attributes in the depth static model. Rock physics modeling and Bayesian classification were used to convert the elastic properties into porosity and lithology (static rock-type (SRT)), which were validated in blind wells and used to rank the multiple realizations. In the geostatistical pre-stack inversion, the elastic property prediction was constrained by the seismic data and controlled by variograms, probability distributions and a guide model. The deterministic inversion was used as a guide or prior model and served as a laterally varying mean. Initially, unconstrained inversion was tested by keeping all wells as blind and the predictions were optimized by updating the input parameters. The stochastic inversion results were also frequency filtered in several frequency bands, to understand the impact of seismic data and variograms on the prediction. Finally, 30 wells were used as input, to generate 80 realizations of P-impedance, S-impedance, Vp/Vs, and density. After converting back to depth, 30 additional blind wells were used to validate the predicted porosity, with a high correlation of more than 0.8. The realizations were ranked based on the porosity predictability in blind wells combined with the pore volume histograms. Realizations with high predictability and close to the P10, P50 and P90 cases (of pore volume) were selected for further use. Based on the rock physics analysis, the predicted lithology classes were associated with the geological rock-types (SRT) for incorporation in the static model. The study presents an innovative approach to successfully integrate geostatistical inversion and rock physics with static modeling. This workflow will generate seismically constrained high-resolution reservoir properties for thin reservoirs, such as porosity and lithology, which are seamlessly mapped in the depth domain for optimized development of the field. It will also account for the uncertainties in the reservoir model through the generation of multiple equiprobable realizations or scenarios. |