On Distinct Consecutive Differences

Autor: József Solymosi, Imre Z. Ruzsa, George Shakan, Endre Szemerédi
Rok vydání: 2021
Předmět:
Zdroj: Springer Proceedings in Mathematics & Statistics ISBN: 9783030679958
Popis: We show that if \(A=\{a_1< a_2< \ldots < a_k\}\) is a set of real numbers such that the differences of the consecutive elements are distinct, then for and finite \(B \subset \mathbb {R}\), $$ |A+B|\gg |A|^{1/2}|B|. $$ The bound is tight up to the constant.
Databáze: OpenAIRE