On Distinct Consecutive Differences
Autor: | József Solymosi, Imre Z. Ruzsa, George Shakan, Endre Szemerédi |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Springer Proceedings in Mathematics & Statistics ISBN: 9783030679958 |
Popis: | We show that if \(A=\{a_1< a_2< \ldots < a_k\}\) is a set of real numbers such that the differences of the consecutive elements are distinct, then for and finite \(B \subset \mathbb {R}\), $$ |A+B|\gg |A|^{1/2}|B|. $$ The bound is tight up to the constant. |
Databáze: | OpenAIRE |
Externí odkaz: |