Sulfonic acid modified hollow polymer nanospheres with tunable wall-thickness for improving biodiesel synthesis efficiency
Autor: | Yu Zhang, Wenliang Song, Il Kim, Ji Su Kim, Anuraj Varyambath |
---|---|
Rok vydání: | 2020 |
Předmět: |
chemistry.chemical_classification
Green chemistry Nanostructure Materials science 02 engineering and technology Polymer Sulfonic acid 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences Pollution 0104 chemical sciences Catalysis chemistry Polymerization Chemical engineering Biodiesel production Environmental Chemistry 0210 nano-technology Porous medium |
Zdroj: | Green Chemistry. 22:3572-3583 |
ISSN: | 1463-9270 1463-9262 |
Popis: | Precisely designing the morphology and size of nanostructures is vital in green chemistry as various advanced applications depend upon the shapes and dimensions of the functionalised materials. Herein, we report on a green and efficient self-assembly strategy for synthesising hollow polymeric nanospheres with tunable wall thicknesses. The morphology and shell thickness of the nanospheres can be easily tailored by rationally manipulating monomer and catalyst combinations during the one-pot Friedel–Crafts polymerisation process, without using any templates or surfactants. Heterogeneous solid sulfonic acid catalysts can be easily achieved via the post-sulfonation strategy. These porous materials have preferable surface areas, ordered hollow pore structures, and accessible acidic sites, and they serve as promising catalysts for biodiesel production. This study provides insights into the production of template- and metal-free based catalysts for biofuel production, which is imperative for the green and efficient design and manufacture of high-activity heterogeneous catalysts. |
Databáze: | OpenAIRE |
Externí odkaz: |