Application of nonlinear dynamics methods for quantitative and qualitative evaluation of properties of 2D models of S-chaos
Autor: | Aleksei A. Gavrishev |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Journal of Applied Informatics. 16:125-143 |
ISSN: | 2687-0649 1993-8314 |
Popis: | In this article, based on the mathematical, numerical and computer modeling carried out by the combined application of E&F Chaos, Past, Fractan, Visual Recurrence Analysis, Eviews Student Version Lite programs, some of the well-known 2D models of S-chaos are modeled, the data obtained are studied using nonlinear dynamics methods and the fact of their relation or non-relation to chaotic (quasi-chaotic) processes is established. As a result, it was found that the time diagrams obtained for the studied 2D models of S-chaos have a complex noise-like appearance and are continuous in the time domain. The resulting spectral diagrams have both a complex noise-like and regular appearance and are continuous in the spectral regions. The obtained values of BDS-statistics show that some of the time implementations can be attributed to chaotic (quasi-chaotic) processes. Also, the obtained values of BDS-statistics show that the studied 2D models of S-chaos have a property characteristic of classical chaotic (quasi-chaotic) processes: the slightest change in the initial conditions leads to the generation of a new set of signals. The obtained values of the lower bound of the KS-entropy show that the studied models also have the properties of chaotic (quasi-chaotic). Taking into account the conducted research and data from known works [1–5], it is possible to conclude that 2D models of S-chaos can relate to chaotic (quasi-chaotic) processes. |
Databáze: | OpenAIRE |
Externí odkaz: |