An Expert System-Driven Method for Parametric Trajectory Optimization During Conceptual Design

Autor: Manuel J. Diaz, Matthew R. Zwack, Patrick D. Dees, Stephen Edwards, Michael J. Steffens, James B. Holt
Rok vydání: 2015
Předmět:
Zdroj: AIAA SPACE 2015 Conference and Exposition.
DOI: 10.2514/6.2015-4486
Popis: During the early phases of engineering design, the costs committed are high, costs incurred are low, and the design freedom is high. It is well documented that decisions made in these early design phases drive the entire design's life cycle cost. In a traditional paradigm, key design decisions are made when little is known about the design. As the design matures, design changes become more difficult in both cost and schedule to enact. The current capability-based paradigm, which has emerged because of the constrained economic environment, calls for the infusion of knowledge usually acquired during later design phases into earlier design phases, i.e. bringing knowledge acquired during preliminary and detailed design into pre-conceptual and conceptual design. An area of critical importance to launch vehicle design is the optimization of its ascent trajectory, as the optimal trajectory will be able to take full advantage of the launch vehicle's capability to deliver a maximum amount of payload into orbit. Hence, the optimal ascent trajectory plays an important role in the vehicle's affordability posture yet little of the information required to successfully optimize a trajectory is known early in the design phase. Thus, the current paradigm of optimizing ascent trajectories involves generating point solutions for every change in a vehicle's design parameters. This is often a very tedious, manual, and time-consuming task for the analysts. Moreover, the trajectory design space is highly non-linear and multi-modal due to the interaction of various constraints. When these obstacles are coupled with the Program to Optimize Simulated Trajectories (POST), an industry standard program to optimize ascent trajectories that is difficult to use, expert trajectory analysts are required to effectively optimize a vehicle's ascent trajectory. Over the course of this paper, the authors discuss a methodology developed at NASA Marshall's Advanced Concepts Office to address these issues. The methodology is two-fold: first, capture the heuristics developed by human analysts over their many years of experience; and secondly, leverage the power of modern computing to evaluate multiple trajectories simultaneously and therefore enable the exploration of the trajectory's design space early during the pre- conceptual and conceptual phases of design. This methodology is coupled with design of experiments in order to train surrogate models, which enables trajectory design space visualization and parametric optimal ascent trajectory information to be available when early design decisions are being made.
Databáze: OpenAIRE