Chosen Message Attack on Multivariate Signature ELSA at Asiacrypt 2017
Autor: | Yasuhiko Ikematsu, Tsuyoshi Takagi, Yasufumi Hashimoto |
---|---|
Rok vydání: | 2019 |
Předmět: |
Post-quantum cryptography
General Computer Science business.industry Computer science 020206 networking & telecommunications 020207 software engineering 02 engineering and technology Quadratic function Signature (logic) Random oracle Public-key cryptography Quadratic equation 0202 electrical engineering electronic engineering information engineering Key (cryptography) business Algorithm Security parameter Computer Science::Cryptography and Security |
Zdroj: | Journal of Information Processing. 27:517-524 |
ISSN: | 1882-6652 |
DOI: | 10.2197/ipsjjip.27.517 |
Popis: | One of the most efficient post-quantum signature schemes is Rainbow whose hardness is based on the multivariate quadratic polynomial (MQ) problem. ELSA, a new multivariate signature scheme proposed at Asiacrypt 2017, has a similar construction to Rainbow. Its advantages, compared to Rainbow, are its smaller secret key and faster signature generation. In addition, its existential unforgeability against an adaptive chosen-message attack has been proven under the hardness of the MQ-problem induced by a public key of ELSA with a specific parameter set in the random oracle model. The high efficiency of ELSA is derived from a set of hidden quadratic equations used in the process of signature generation. However, the hidden quadratic equations yield a vulnerability. In fact, a piece of information of these equations can be recovered by using valid signatures and an equivalent secret key can be partially recovered from it. In this paper, we describe how to recover an equivalent secret key of ELSA by a chosen message attack. Our experiments show that we can recover an equivalent secret key for the claimed 128-bit security parameter of ELSA on a standard PC in 177 s with 1326 valid signatures. |
Databáze: | OpenAIRE |
Externí odkaz: |