On the existence of periodic motions of the excited inverted pendulum by elementary methods

Autor: L. Hatvani, L. Csizmadia
Rok vydání: 2018
Předmět:
Zdroj: Acta Mathematica Hungarica. 155:298-312
ISSN: 1588-2632
0236-5294
DOI: 10.1007/s10474-018-0835-6
Popis: Using purely elementary methods, necessary and sufficient conditions are given for the existence of 2T-periodic and 4T-periodic solutions around the upper equilibrium of the mathematical pendulum when the suspension point is vibrating with period 2T. The equation of the motion is of the form $$\ddot{\theta}-\frac{1}{l}(g+a(t)) \theta=0,$$ where l, g are constants and $$a(t) := \begin{cases} A &\text{if } 2kT\leq t < (2k+1)T,\\ -A &\text{if } (2k+1)T\leq t < (2k+2)T,\end{cases}\quad (k=0,1,\dots);$$ A, T are positive constants. The exact stability zones for the upper equilibrium are presented.
Databáze: OpenAIRE