A Generalization of Neumann’s Question

Autor: Mohammad Zarrin, Soran Marzang, N. Ahmadkhah
Rok vydání: 2018
Předmět:
Zdroj: Results in Mathematics. 73
ISSN: 1420-9012
1422-6383
DOI: 10.1007/s00025-018-0844-3
Popis: Let G be a group, $$m\ge 2$$ and $$n\ge 1$$ . We say that G is an $$\mathcal {T}(m,n)$$ -group if for every m subsets $$X_1, X_2, \dots , X_m$$ of G of cardinality n, there exists $$i\ne j$$ and $$x_i \in X_i, x_j \in X_j$$ such that $$x_ix_j=x_jx_i$$ . In this paper, we give some examples of finite and infinite non-Abelian $$\mathcal {T}(m,n)$$ -groups and we discuss finiteness and commutativity of such groups. We also show solvability length of a solvable $$\mathcal {T}(m,n)$$ -group is bounded in terms of m and n.
Databáze: OpenAIRE