LARGen: Automatic Signature Generation for Malwares Using Latent Dirichlet Allocation
Autor: | Sung-Ho Kim, Jun-Rak Lee, Jaehyuk Choi, Suchul Lee, Han-Jun Yoon, Do Hoon Lee, Sungil Lee |
---|---|
Rok vydání: | 2018 |
Předmět: |
021110 strategic
defence & security studies Computer science Network security business.industry ComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKS 0211 other engineering and technologies Context (language use) 02 engineering and technology Intrusion detection system computer.software_genre Latent Dirichlet allocation symbols.namesake Digital signature 0202 electrical engineering electronic engineering information engineering symbols Key (cryptography) Cyber-attack Malware 020201 artificial intelligence & image processing Data mining Electrical and Electronic Engineering business computer |
Zdroj: | IEEE Transactions on Dependable and Secure Computing. 15:771-783 |
ISSN: | 2160-9209 1545-5971 |
DOI: | 10.1109/tdsc.2016.2609907 |
Popis: | As the quantity and complexity of network threats grow, Intrusion Detection Systems (IDSs) have become critical for securing networks. Achieving computer network intrusion detection with these IDSs requires high-level information technology and security expertise because malicious traffic has to be rigorously analyzed and the appropriate IDS rules written to effectively detect vulnerabilities that may potentially be exploited. However, incorrect IDS rules may produce numerous false positives, thereby degrading the performance of the IDS, and even worse, paralyzing the network. In this paper, we present a novel approach that exploits the Latent Dirichle Allocation (LDA) algorithm to generate IDS rules. Our proposed method, called L DA-based A utomatic R ule Gen eration ( LARGen ), automatically performs an analysis of the malicious traffic and extracts the appropriate attack signatures that will be used for IDS rules. LARGen first extracts multiple signature strings embedded in network flows. Then, the flows are classified based on the extracted signature strings, and key content strings for malicious traffic are identified through the LDA inferential topic model. Those key content strings are the core of an IDS rule that can detect malicious traffic. We study the effectiveness of LDA in the context of network attack signature generation via extensive experiments with real network trace data, consisting of both benign and malicious traffic. Experimental results confirm that threat rules generated from LARGen accurately detect every cyber attack with high accuracy. |
Databáze: | OpenAIRE |
Externí odkaz: |