Optical coherence tomography of human fetal membrane sub-layers during dynamic loading

Autor: Kayvan Samimi, Emmanuel Contreras Guzman, May Wu, Lindsey Carlson, Helen Feltovich, Timothy J. Hall, Kristin M. Myers, Michelle L. Oyen, Melissa C. Skala
Rok vydání: 2023
Popis: Fetal membranes have important mechanical and antimicrobial roles in maintaining pregnancy. However, the small thickness (ex vivoproperties of human fetal membranes under dynamic loading. A saline inflation test was incorporated into an OCT system, and tests were performed on n=33 and n=32 human samples obtained from labored and C-section donors, respectively. Fetal membranes were collected in near-cervical and near-placental locations. Histology, endogenous two photon fluorescence microscopy, and second harmonic generation microscopy were used to identify sources of contrast in OCT images of fetal membranes. A convolutional neural network was trained to automatically segment fetal membrane sub-layers with high accuracy (Dice coefficients >0.8). Intact amniochorion bilayer and separated amnion and chorion were individually loaded, and the amnion layer was identified as the load-bearing layer within intact fetal membranes for both labored and C-section samples, consistent with prior work. Additionally, the rupture pressure and thickness of the amniochorion bilayer from the near-placental region were greater than those of the near-cervical region for labored samples. This location-dependent change in fetal membrane thickness was not attributable to the load-bearing amnion layer. Finally, the initial phase of the loading curve indicates that amniochorion bilayer from the near-cervical region is strain-hardened compared to the near-placental region in labored samples. Overall, these studies fill a gap in our understanding of the structural and mechanical properties of human fetal membranes at high resolution under dynamic loading events.
Databáze: OpenAIRE