On-chip multivariant COVID 19 photonic sensor based on silicon nitride double-microring resonators
Autor: | Arieh Grosman, Tal Duanis-Assaf, Noa Mazurski, Roy Zektzer, Christian Frydendahl, Liron Stern, Meital Reches, Uriel Levy |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Nanophotonics. |
ISSN: | 2192-8614 2192-8606 |
DOI: | 10.1515/nanoph-2022-0722 |
Popis: | Coronavirus disease 2019 (COVID-19) is a newly emerging human infectious disease that continues to develop new variants. A crucial step in the quest to reduce the infection is the development of rapid and reliable virus detectors. Here, we report a chip scale photonic sensing device consisting of a silicon-nitride double microring resonator (MRR) for detecting SARS-CoV-2 in clinical samples. The sensor is implemented by surface activation of one of the MRRs, acting as a probe, with DNA primers for SARS-CoV-2 RNA, whereas the other MRR is used as a reference. The performance of the sensor is determined by applying different amounts of SARS-CoV-2 complementary RNA. As will be shown in the paper, our device detects the RNA fragments at concentrations of 10 cp/μL and with sensitivity of 750 nm/RIU. As such, it shows a promise toward the implementation of label-free, small form factor, CMOS compatible biosensor for SARS-CoV-2, which is also environment, temperature, and pressure independent. Our approach can also be used for detecting other SARS-CoV-2 genes, as well as other viruses and pathogens. |
Databáze: | OpenAIRE |
Externí odkaz: |