Gromov-Witten/Pairs correspondence for the quintic 3-fold
Autor: | Rahul Pandharipande, Aaron Pixton |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Journal of the American Mathematical Society. 30:389-449 |
ISSN: | 1088-6834 0894-0347 |
DOI: | 10.1090/jams/858 |
Popis: | We use the Gromov-Witten/Pairs (GW/P) descendent correspondence for toric 3-folds and degeneration arguments to establish the GW/P correspondence for several compact Calabi-Yau (CY) 3-folds (including all CY complete intersections in products of projective spaces). A crucial aspect of the proof is the study of the GW/P correspondence for descendents in relative geometries. Projective bundles over surfaces relative to a section play a special role. The GW/P correspondence for Calabi-Yau complete intersections provides a structure result for the Gromov-Witten invariants in a fixed curve class. After a change of variables, the Gromov-Witten series is a rational function in the variable − q = e i u -q=e^{iu} invariant under q ↔ q − 1 q \leftrightarrow q^{-1} . |
Databáze: | OpenAIRE |
Externí odkaz: |