Memristive Computational Amplifiers and Equation Solvers

Autor: P. Michael Preetam Raj, Souvik Kundu, Amlan Ranjan Kalita
Rok vydání: 2020
Předmět:
Zdroj: Lecture Notes in Electrical Engineering ISBN: 9789811547744
DOI: 10.1007/978-981-15-4775-1_9
Popis: Computational amplifiers are extremely useful for generating waveforms and solving numerous equations. In this work, memristive computational amplifier circuits were developed on spice simulator platform for the generation of step, pulse, exponential, and parabolic signals. On one side, decaying characteristics have been obtained based on the controlled decrement (or increment) in the memristance when the memristor is connected in the output (or input) loop of the amplifier. On the other side, rising characteristics were generated through exchanging the polarity of the input applied signal. These characteristics were further employed to solve exponential, linear, and parabolic equations. External voltage signals and internal circuit resistances were utilized to control the signal parameters such as rise time, fall time, delay, and amplitude. In the proposed circuits, the extension or reduction in the range of the generated signals was made possible through adjusting the external bias voltages. This work paves the way for futuristic low power, improved latency, and reduced on-chip area-based computational memristive amplifiers.
Databáze: OpenAIRE