DISTRIBUTED PROCESSING OF LARGE VOLUMES OF TRANSACTIONAL DATA

Autor: O. Dmytriieva, D. Nikulin
Rok vydání: 2020
Předmět:
Zdroj: Naukovyi visnyk Donetskoho natsionalnoho tekhnichnoho universytetu. :27-36
ISSN: 2415-7902
DOI: 10.31474/2415-7902-2020-1(4)-2(5)-27-36
Popis: Роботу присвячено питанням розподіленої обробки транзакцій при проведенні аналізу великих обсягів даних з метою пошуку асоціативних правил. На основі відомих алгоритмів глибинного аналізу даних для пошуку частих предметних наборів AIS та Apriori було визначено можливі варіанти паралелізації, які позбавлені необхідності ітераційного сканування бази даних та великого споживання пам'яті. Досліджено можливість перенесення обчислень на різні платформи, які підтримують паралельну обробку даних. В якості обчислювальних платформ було обрано MapReduce – потужну базу для обробки великих, розподілених наборів даних на кластері Hadoop, а також програмний інструмент для обробки надзвичайно великої кількості даних Apache Spark. Проведено порівняльний аналіз швидкодії розглянутих методів, отримано рекомендації щодо ефективного використання паралельних обчислювальних платформ, запропоновано модифікації алгоритмів пошуку асоціативних правил. В якості основних завдань, реалізованих в роботі, слід визначити дослідження сучасних засобів розподіленої обробки структурованих і не структурованих даних, розгортання тестового кластера в хмарному сервісі, розробку скриптів для автоматизації розгортання кластера, проведення модифікацій розподілених алгоритмів з метою адаптації під необхідні фреймворки розподілених обчислень, отримання показників швидкодії обробки даних в послідовному і розподіленому режимах з застосуванням Hadoop MapReduce. та Apache Spark, проведення порівняльного аналізу результатів тестових вимірів швидкодії, отримання та обґрунтування залежності між кількістю оброблюваних даних, і часом, витраченим на обробку, оптимізацію розподілених алгоритмів пошуку асоціативних правил при обробці великих обсягів транзакційних даних, отримання показників швидкодії розподіленої обробки існуючими програмними засобами. Ключові слова: розподілена обробка, транзакційні дані, асоціативні правила, обчислюваний кластер, Hadoop, MapReduce, Apache Spark
Databáze: OpenAIRE