Maximal regularity of the spatially periodic stokes operator and application to nematic liquid crystal flows
Autor: | Jonas Sauer |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Czechoslovak Mathematical Journal. 66:41-55 |
ISSN: | 1572-9141 0011-4642 |
DOI: | 10.1007/s10587-016-0237-2 |
Popis: | We consider the dynamics of spatially periodic nematic liquid crystal flows in the whole space and prove existence and uniqueness of local-in-time strong solutions using maximal Lp-regularity of the periodic Laplace and Stokes operators and a local-intime existence theorem for quasilinear parabolic equations a la Clement-Li (1993). Maximal regularity of the Laplace and the Stokes operator is obtained using an extrapolation theorem on the locally compact abelian group \(G: = \mathbb{R}^{n - 1} \times \mathbb{R}/L\mathbb{Z}\) to obtain an R-bound for the resolvent estimate. Then, Weis’ theorem connecting R-boundedness of the resolvent with maximal Lp regularity of a sectorial operator applies. |
Databáze: | OpenAIRE |
Externí odkaz: |