On cardinality bounds for $$\theta^n$$-Urysohn spaces
Autor: | N.A. Carlson, Jack R. Porter, Fortunata Aurora Basile |
---|---|
Rok vydání: | 2019 |
Předmět: |
Class (set theory)
General Mathematics 010102 general mathematics Mathematics::General Topology 010103 numerical & computational mathematics Urysohn and completely Hausdorff spaces Space (mathematics) 01 natural sciences Combinatorics Mathematics::Logic Cardinality Homogeneous Mathematics::Metric Geometry Closure operator 0101 mathematics Mathematics |
Zdroj: | Acta Mathematica Hungarica. 159:109-123 |
ISSN: | 1588-2632 0236-5294 |
DOI: | 10.1007/s10474-019-00981-y |
Popis: | We introduce the class of $$\theta^n$$ -Urysohn spaces and the $$n$$ - $$\theta$$ -closure operator. $$\theta^n$$ -Urysohn spaces generalize the notion of a Urysohn space and we consider their relationship with S(n)-spaces, studied in [9], [14] and [18]. We estabilish bounds on the cardinality of these spaces and cardinality bounds if the space is additionally homogeneous. |
Databáze: | OpenAIRE |
Externí odkaz: |