Generalization of the hybrid monotone second-order finite difference scheme for gas dynamics equations to the case of unstructured 3D grid
Autor: | V. S. Mingalev, Igor Mingalev, K. G. Orlov, Oleg Mingalev, A. M. Oparin |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Computational Mathematics and Mathematical Physics. 50:877-889 |
ISSN: | 1555-6662 0965-5425 |
DOI: | 10.1134/s0965542510050118 |
Popis: | A generalization of the explicit hybrid monotone second-order finite difference scheme for the use on unstructured 3D grids is proposed. In this scheme, the components of the momentum density in the Cartesian coordinates are used as the working variables; the scheme is conservative. Numerical results obtained using an implementation of the proposed solution procedure on an unstructured 3D grid in a spherical layer in the model of the global circulation of the Titan’s (a Saturn’s moon) atmosphere are presented. |
Databáze: | OpenAIRE |
Externí odkaz: |